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Abstract. In this project, we explore optimal path planning in the context of wildfire
rescue, where fires evolve dynamically over time. Using Pontryagin’s Maximum Princi-
ple, we solve a boundary value problem to determine rescue paths that minimize time,
risk, and control input. We begin with a Gaussian model for fire spread, whose mean
and variance evolve in the direction of wind, and address challenges such as preserving
fire intensity, incorporating wind penalties, and modeling realistic wind patterns. We ex-
tend the problem to include multiple rescue targets, using a heuristic to prioritize them
based on danger. Finally, we outline a more physically accurate fire model governed by a
convection–diffusion–reaction PDE, which offers a promising direction for future work.

1. Background

Optimal path planning is a fundamental application of control theory, with broad rele-
vance across many domains. In this work, we focus on optimal path planning in the context
of wildfire rescue. Specifically, we aim to compute the optimal trajectory of an agent tasked
with rescuing people, animals, or valuable assets, while avoiding areas threatened by ac-
tive wildfires. The objective is to maximize rescue efficiency and safety, ensuring timely
extraction before the fire reaches the targets. Our approach is grounded in Pontryagin’s
maximum principle (PMP), which provides necessary conditions for optimality in control
systems.

Wildfire avoidance is a critical and timely challenge. While the methods presented here
are not yet suitable for immediate real-world deployment, we believe they offer a principled
foundation for applying optimal control techniques to wildfire rescue scenarios.

Importantly, the framework we develop, which is centered on dynamically evolving ob-
stacle avoidance, is not exclusive to wildfire settings. The key distinction between this and
other applications, such as crowd navigation, traffic-aware autonomous driving, or evac-
uation planning during natural disasters, lies primarily in the modeling of the dynamic
obstacles. This highlights the adaptability of our approach across diverse real-time, safety-
critical environments.

2. The Control Problem

This section introduces the mathematical model for the agent’s control dynamics and fire
obstacles.

2.1. Mathematical Representation. To achieve the goal of safely and efficiently reaching
a target, the optimal path must balance minimizing travel time, avoiding hazardous fire
zones, and limiting control effort. To formalize this, we define the following cost functional:
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(1) J [u] =

∫ tf

0
αdt︸ ︷︷ ︸

time cost

+

∫ tf

0

K∑
i=1

βiFi(t, x(t), y(t))dt︸ ︷︷ ︸
obstacle cost

+

∫ tf

0

λ

2
∥u(t)∥2dt︸ ︷︷ ︸

control input cost

where

• u(t) ∈ R2 is the control input applied at time t.
• (x(t), y(t)) ∈ R2 denotes the position of the agent at time t.
• Fi(t, x, y) ∈ R represents the fire-induced cost associated with obstacle i at position
(x, y) and time t.
• α, βi, λ ∈ R≥0 are scalar weights that define the relative importance of each compo-
nent of the cost functional.
• tf ∈ R≥0 is the final time, which is free and also optimized over.

We assume that the controller directly manipulates the agent’s acceleration in the x- and
y-directions. As such, we define the control inputs u1, u2 to be ẍ and ÿ. This motivates the
following state transition equations.

(2)
d

dt

[
x y ẋ ẏ

]⊤
=

[
ẋ ẏ u1 u2

]⊤
For clarity in what follows, let s =

[
x y ẋ ẏ

]⊤
. Assume that the agent begins at the

origin and that the target is located at (xtar, ytar). Further, it is reasonable to assume that
the agent begins from rest and also must end with zero velocity, so that it can interact with
the target. This leads to the following boundary conditions.

s(0) = 0(3)

s(tf ) =
[
xtar ytar 0 0

]⊤
(4)

2.2. Solution. To derive the necessary conditions for optimality, we apply PMP. This
involves constructing the Hamiltonian, introducing the costate variables, and characterizing
optimal trajectories and controls.

The Hamiltonian corresponding to the cost functional (1) is:

(5) H = p1ẋ+ p2ẏ + p3u1 + p4u2 − α−
K∑
i=1

βiFi(t, x, y)−
λ

2

(
u21 + u22

)
Let p(t) = [p1(t), p2(t), p3(t), p4(t)]

⊤ denote the costate vector. Its dynamics are given
by:

(6) ṗ = −∂H

∂s
=

[∑K
i=1 βi

∂Fi
∂x

∑K
i=1 βi

∂Fi
∂y −p1 −p2

]⊤
where s = [x, y, ẋ, ẏ]⊤ is the state vector.

Since the final time tf is free, the Hamiltonian must vanish at the endpoint:

(7) H(tf ) = 0

Because all state components are fixed at both the initial and final times, no conditions
are imposed on the costate variables. We are left with a boundary value problem with nine
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unknowns (s, p and tf ) with nine conditions (given in 3, 4, 7). As such, we use Scipy’s
solve bvp method for determining the optimal solution.

Note that the above derivation assumes that the partial derivatives of each Fi exists,
which we have intentionally left unspecified. This is addressed in the following section.

3. Modeling Fire

To begin, we consider the following desirable properties for a fire. First, the fire function
should be differentiable, as this will allow for the computation of partial derivatives as
required for the costate dynamics 6. Second, the fire function should be malleable, meaning
that we can easily change the shape throughout time to resemble realistic fire movement.
For example, a fire should grow in the direction of wind.

Initially, a clear functional choice that satisfies these requirements is the pdf of the Gauss-
ian distribution.

3.1. Gaussian Fire Model. We model each fire as a time-evolving bivariate Gaussian
distribution. For clarity, we omit the subscript Fi and present the formulation for a single
fire. The extension to multiple fires is straightforward.

(8) F (t, x(t), y(t)) ∼ N
(
µ(t),Σ(t)

)
The mean µ(t) represents the fire’s center and evolves linearly in time, driven by wind:

µ(t) =

[
µx(t)
µy(t)

]
=

[
µx0 + wxt
µy0 + wyt

]
Here, denote µx0 , µy0 as the initial center of the fire and w =

[
wx wy

]⊤
is the wind

vector (which is possibly a function of time). This choice reflects the intuitive behavior of
fire drifting along with the wind.

To capture the spread of the fire, we define a time-varying covariance matrix. Let σ2
1(t)

and σ2
2(t) denote the variances along and perpendicular to the wind direction, respectively.

We model their evolution as

σ2
1(t) = σ2

10 + kt

σ2
2(t) = σ2

20 + ct

where σ2
10
, σ2

20
are initial variances and k, c ∈ R control how the rate of fire spread along

and across the direction of the wind. It is sensible to choose these such that c ≤ k. These
terms capture the desired anisotropic and time-dependent fire growth, expressed in the
basis aligned with the wind vector w. In this coordinate system, the covariance matrix is
diagonal:

Σ′ =

[
σ2
1 0
0 σ2

2

]
To express this variance in the standard coordinate system, we apply a rotation. First,

normalize the wind vector:

(ux, uy) =
(wx, wy)

∥w∥
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Define the rotation matrix R as:

R =

[
ux −uy
uy ux

]
Here, the first column of R is the unit vector in the direction of the wind, and the

second column is the unit vector perpendicular to it. This rotation transforms the aligned
covariance back into the standard basis:

Σ(t) = RΣ′RT

An example of such fire is displayed in Figure 1. Clearly, the cost of being in the center
of the fire decays quickly through time. This is a problem we address below in Section 4.

Figure 1. An example of fire under the original Gaussian model. Problem-
atically, the cost of being inside the fire decays over time. Wind was taken
to be constant with w = (1, 1/2).

Despite the problem of decaying cost, using this initial fire model and the methods
outlined in Section 2.2 still resulted in successful solutions. For one example, see Figure 2.

4. Modeling Improvements

Despite the promising results from the initial cost functional and fire functions, several
concerns were brought to our attention.

(1) Decay in the cost of the center of the fire over time. As the variance is increasing in
time and the pdf of the Gaussian will always integrate to one, the relative cost of
the distribution’s peak will decay over time. This could lead to undesired behavior,
where the agent eventually passes directly through the center of the fire. Figure 1
demonstrates the decay of the fire over time.

(2) Wind not effecting the flight of the drone. Our cost functional did not punish the
drone for flying against the wind. This is unrealistic.
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Figure 2. A solution with two fires and varying wind under the initial
Gaussian fire model (unscaled). Despite the decay in fire cost, the agent still
avoids both fires. The wind was given by w(t) = (1 + 0.5 sin(1.3t),−0.5 +
0.3 cos(1.5t)). The current wind vector and overall wind trajectory is plotted.

(3) The functions defining the wind were not realistic enough. As seen in the bottom
right of figure 2, the functions defining the wind were simple trigonometric functions.
While fairly realistic in the short term, once it had cycled past it’s period, the fires
appeared to undulate.

4.1. Adaptive Fire Scaling. To address problem (1), we needed to scale the fire density
function to prevent it from decaying over time. More precisely, we required the peak of the
probability density function to maintain a constant value over time.
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We chose to enforce that the maximum of the fire distribution remains 1 for all t, and
define a time-dependent scaling factor h(t). We impose the condition

1 = h(t)F (µ)

where F (µ) is the value of the fire pdf at its mean µ. Solving for h(t), we obtain:

h(t) =
1

F (µ)
.

By multiplying the original fire distribution F by this factor h(t), we ensure that the peak
value remains constant in time, thereby preventing the fire from “eroding” as it spreads.

See Figure 3 for a visualization of this rescaled fire model.

Figure 3. An example of the fire under the scaled Gaussian model. Now
the fire will ‘retain’ it’s heat with time and not shrink. Wind was taken to
be constant with w = (1, 1/2).

4.2. Punishing Movement Against Wind. To address problem (2), we modified the
cost functional to penalize the drone for flying against the direction of the wind. This was
accomplished by incorporating the wind components directly into the control terms:

ẍ = u1 −→ u1 + γwx

ÿ = u2 −→ u2 + γwy

In the presence of wind, the drone must exert more effort to fly against it (i.e., when u1
and wx have opposite signs), and less effort when flying with it (i.e., when u1 and wx share
the same sign), in order to achieve the same net acceleration. The coefficient γ controls
how strongly the wind affects the drone’s motion. This adjustment more accurately reflects
the true energy cost of flying the drone under varying wind conditions. See Figure 4 for a
visualization of this behavior.
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(a) The optimal path for γ = 0

(b) The optimal path for γ = 10

Figure 4. The higher γ value influenced the path of the drone and caused
to flight to take longer.

4.3. Alternative Wind Functions. To improve upon our earlier wind model (see Fig-
ure 2), we introduced additional linear terms to capture long-term directional trends and
gradual changes in wind strength over time. The resulting wind model is given by:

wx(t) = wx0 + cxt+ sin(kxt)

wy(t) = wy0 + cyt+ sin(kyt)

Here, the sinusoidal components model short-term oscillations, while the linear terms cxt
and cyt account for slow, cumulative shifts in wind over the course of the mission. Also,
the addition of the linear terms prohibit cyclic undulations. The effects of this change are
visualized in Figure 5.
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Figure 5. An example trajectory generated using the improved wind model
from Section 4.3, which incorporates both oscillatory and long-term direc-
tional wind behavior. The drone still finds the optimal path, but through a
slightly more realistic environment.

5. Extension: Multiple Targets

We extend our basic obstacle-avoidance approach to handle multiple targets and require
that the agent return to its starting location upon completion. This corresponds scenarios
such as rescuing multiple individuals or retrieving valuable items, with the goal of returning
home safely.

A central challenge in this problem is determining the order in which to visit the targets.
While this can be computationally demanding in general, we introduce a simple heuristic
algorithm that prioritizes targets based on a notion of “danger.” Specifically, we assess
whether each target is at risk by constructing a 45◦ cone originating from each fire location
and oriented in the direction of the wind. If a target lies within such a cone, it is considered
endangered, and its priority is increased by scaling down its effective distance using a



AN OPTIMAL CONTROL APPROACH TO WILDFIRE RESCUE 9

hyperparameter α ∈ R≥0. This encourages the agent to rescue endangered targets sooner.
The full procedure is outlined in Algorithm 1.

Algorithm 1 HOAGY: Heuristic Obstacle-Avoiding Greedy Yielder

1: Input: Set of targets T = {t1, t2, . . . , tn}, initial position x0, fire centers F =
{f1, f2, . . . }, wind function w⃗(t), danger scaling factor α ∈ R≥0

2: Initialize: x← x0, visited ← ∅
3: while there are unvisited targets do
4: for each unvisited target t ∈ T \ visited do
5: dt ← ∥t− x∥ ▷ Euclidean distance from current position
6: danger← False
7: for each fire center f ∈ F do
8: w⃗f ← w⃗(t)
9: Define cone Cf originating at f , opening 45◦ in direction w⃗f

10: if t ∈ Cf then
11: danger← True
12: break
13: end if
14: end for
15: if danger then
16: dt ← dt − α ▷ Boost priority of endangered targets
17: end if
18: end for
19: Select target t∗ with minimum adjusted distance dt∗
20: Solve BVP from current position x to t∗ using solve bvp

21: Update:
• Current position x← t∗

• Fire centers F as needed
• Wind vector w⃗(t) for next planning phase

22: Mark t∗ as visited
23: end while
24: Solve final BVP from current position x back to initial position x0

While this algorithm may be improved upon and is a possible future research direction,
our experiments yielded successful results. A visualization of one possible scenario is given
in Figure 6.

6. A More Realistic Model of Fire: Convection-Diffusion-Reaction

While our Gaussian model of fire, presented in Section 3.1, yielded optimal solutions,
we acknowledge that it is not the most physically realistic model. We introduced dynamic
scaling so that the cost of being in the center of the fire no longer decays; however, problems
still remain. For example, the edges of the fire are still the coldest regions, whereas in reality,
they may be the hottest, as these areas are exposed to fresh fuel and air. Additionally, the
fact that the fire’s entire mass shifts away from its original location oversimplifies real fire
dynamics—its influence would likely persist in previously burned areas for a longer period.

One approach that is both more physically realistic and addresses the issues described
above is inspired by the work in [2, 1]. Though ambitious, the central idea of this method is
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Figure 6. A possible optimal solution to a scenario with four targets and
two fires. Wind was chosen to be constant with w = (2, 1). The order of
pickup was determined by Algorithm 1.

to model the fire as a solution to a convection–diffusion–reaction partial differential equation
(PDE):

(9)
∂ξ

∂t
+∇ · (w(t,x)ξ) = ∇ · (K(ξ)∇ξ) + f(ξ, v,x),

∂v

∂t
= g(ξ, v)

where t is time, x ∈ Ω ⊆ R2 is the spatial variable representing the forest in which the fire
may propagate, and ξ = ξ(t,x) and v = v(t,x) are the unknown functions. Here ξ represents
the non-dimensionalized temperature and v the non-dimensionalized mass fraction of solid
fuel. Additionally, K = K(ξ) is a given diffusion coefficient, and w is the advection velocity
representing wind speed. The functions f(ξ, v,x) and g(ξ, v,x) are the reactive part of the
model. Reasonable boundary and initial conditions are

(10) (ξw −K(ξ)∇ξ) · n = 0, (t,x) ∈ (0,+∞)× ∂Ω

where n is the unit normal vector to ∂Ω, and the initial conditions are
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(11) ξ(0,x) = ξ0(x), v(0,x) = v0(x), x ∈ Ω

The boundary conditions are referred to as zero-flux, which can be interpreted in our
setting as (1) no heat can leave or enter the region through the boundary and (2) no fuel is
supplied or lost through the boundary (as fuel is confined to the forested region). We believe
these are reasonable as it ensures the fire can only spread within the region of interest.

An algorithm for numerically approximating solutions ξ, v to 9 is provided in [2]. Al-
though we attempted to replicate this approach, we were ultimately unsuccessful. This
remains a key area of interest for future work.

7. Conclusions and Next Steps

In this project, we explored the application of PMP in path planning for wildfire rescues.
By modeling the dynamics of the fire and of the movemnt of the drone, we were able to derive
the optimal paths to minimize time, energy and risk exposure. We modeled the fires with
dynamic Gaussian distributions that moved in the direction of wind. While we got promising
results with this initial model, we improved upon our techniques by dynamically scaling the
distributions to prevent unrealistic cost decay, penalizing drone flight in the direction of the
wind, and explored more realistic approaches to modeling wind. After incorporating these
improvements, we developed a heuristic algorithm that plans an efficient path for visiting
multiple targets and returning to the starting position.

Future work on this problem could explore the more realistic model of the fire as given in
Section 6. While the HOAGY algorithm (1) produced strong results, alternative algorithms
could be developed to prioritize different objectives or improve computational efficiency.
Additionally, one could extend the model to three dimensions to better simulate a drone’s
flight through the air. Also, using principles of reinforcement learning, future work could
incorporate uncertainty into the positions of the targets and fires. Lastly, it would be
interesting to extend the framework to support multi-agent systems for coordination among
multiple rescuers.

8. Code

All relevant code for replicating these experiments can be found on our shared GitHub
repository linked here.

9. FERPA Release

We give Dr. Evans, Dr. Barker, and other instructors at BYU teaching ACME classes
permission to share our project as an example of a good project in future classes they teach.

https://github.com/mwshumway/Wildfires
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