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ABSTRACT. Financial markets are often classified into two regimes: bull
and bear. Identifying the current regime helps investors develop effective
strategies. This work uses clustering algorithms, hidden Markov mod-
els (HMMs), and a statistical jump model to classify historical regimes
and make future predictions upon which an investment strategy is built.
While clustering and HMMs produce noisy estimates, the jump model
yields smoother regime transitions by penalizing regime switches. Over-
all, the models effectively classify regimes, and the investment strategy
delivers reasonable results.

1. PROBLEM STATEMENT AND MOTIVATION

Investing is complicated and often confusing. While financial firms of-
fer many retirement and investment products, the inner workings of these
strategies are rarely transparent. Academic investing research can also be
difficult to apply in practice. This disconnect motivates our research in
exploring mathematical models which may also be applied to real world in-
vesting. Specifically, we investigate financial market regime identification
and forecasting.

Market regimes are periods where financial markets may be classified
differently due to economic conditions or investor sentiment. Recognizing
regimes such as high volatility periods versus stable periods or recession
phases versus growth phases has been shown to improve investment deci-
sion making across asset classes and markets [MSS™12]. Importantly, these
regimes appear consistently across various asset classes and markets around
the world, making this topic universally relevant.

Prior studies have used various statistical tools to identify these regimes,
including HMMs [AT10, HL90|] and statistical jump models [NLM20, [SYM24].
We build on this by comparing these approaches side-by-side and introducing
our own work using the Gaussian mixture model. Our analysis culminates
in an investment strategy informed by regime predictions.

In this work, we consider bull and bear financial market regimes. Bull
markets characterize periods of large investment gains, low volatility, and
positive investor sentiment, whereas bear markets characterize the opposite
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behavior. Professional investors are motivated to adjust their portfolio hold-
ings according to this bull and bear model. We therefore seek to construct
our investment strategy based on predicted bull or bear market regimes.

2. DATA

Our dataset consists of daily price data on 12 exchange traded funds
(ETFs): SPY, tracking the S&P 500 index, and 11 sector-based ETFs which
together comprise the S&P 500, such as technology, healthcare, and utilities.
Our data runs from 1994 to present. This data is sourced using the yfinance
package in Python. This package, widely used and carefully maintained,
efficiently provides clean and well-organized financial data. While yfinance
provides several features in its time series, daily price is the only one relevant
to our project. We use price to construct synthetic features.

2.1. Data Engineering. One advantage of using yfinance is that it pro-
vides data without missing values or NaNs, largely due to its focus on daily
frequency data. This greatly simplifies the cleaning process. As a result, we
focus less on cleaning and more on feature construction.

We use daily price data to compute several key metrics, including returns,
downside deviation, and Sortino ratios across various time horizons. Daily
data strikes a balance between noise and granularity—minute data is too
noisy, while weekly or monthly data is too coarse to capture realistic regime
shifts. The inclusion of Sortino ratios and downside deviation is motivated
by the work in [SYM24]. Returns are calculated as percentage changes in
closing price between consecutive days, reflecting profit or loss.

A Sharpe ratio indicates the risk adjusted return or amount of return for
one unit of risk with higher values representing stronger performance. The
Sortino ratio, a modification of the Sharpe ratio, measures the risk-adjusted
return of an asset while specifically considering downside volatility. It is
computed by subtracting a target or risk-free return from the asset’s actual
returns and dividing by the downside deviation. The downside deviation
itself is a specialized volatility metric that focuses on negative returns, cal-
culated by zeroing out positive values and computing standard deviation
among the resulting values. By calculating downside deviation, investors
can better understand the risk associated with undesirable volatility.

We also compute exponentially weighted moving averages (EWMAs) of
each feature over several time horizons to capture persistence in features
over time. Naturally, the EWMA weighs recent behavior over the past. The
length and number of time horizons is a key hyperparameter of our model.
For example, one choice we tested was EWMAs with 5, 10, and 60-day
half-lives, to simultaneously stress recent and former market conditions.

2.2. Train-Test Split. Identifying stock market regimes using machine
learning poses the challenge of ensuring detected patterns remain robust
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out of sample. To achieve this goal, our research employs a train/test split.
This approach is driven by two key motivations:

(1) Assess whether regime classifications derived from historical market
data continue to hold predictive power when applied to future (out-
of-sample) periods.

(2) Reduce noise and minimize frequent transitions between regimes,
leading to clearer and more stable classifications that are less affected
by transient market behavior.

We conduct most of our analysis using the SPY dataset, spanning from
January 1994 to the present. The data is divided chronologically into a
training period (January 1994 — January 2019) and a testing period (January
2019 onward) to prevent temporal leakage. The cutoff in 2019 was chosen as
a splitting point because we wanted to include the COVID-19 market crash
and rebound, and the 2022 bear market. The models are exclusively fitted
on the training data and then evaluated on the testing data.

3. METHODS

Regime identification can be viewed both as a clustering problem, where
each market regime corresponds to a different cluster, and as a latent variable
problem, where hidden states are market regimes and observable states are
financial metrics like prices and returns. As investment regimes typically
persist for several weeks or months rather than days, model behavior should
reflect this economic intuition by exhibiting a high degree of persistence,
characterized by few regime switches.

This project explores various methods to classify the regime of the market,
including K-Means clustering, Gaussian mixture model (GMM), Gaussian
hidden Markov model (GHMM), Gaussian mixture model hidden Markov
model (GMMHMM), and a statistical jump model. Each of these are ex-
plained in greater detail in the following.

3.1. K-Means. As an initial approach, we applied the K-Means algorithm
to partition market conditions based on historical data. This is a hard
clustering algorithm, meaning that each data point is assigned to exactly
one cluster with no uncertainty or overlap. With two clusters, the model
effectively distinguished between bull and bear markets; however, it resulted
in frequent switches between regimes over time, which is inconsistent with
the expected persistence of market conditions.

3.2. Gaussian Mixture Model. The GMM, of which K-Means is a spe-
cific case, was explored as the second model. K-Means implicitly assumes
that clusters are symmetric and equally sized, which can be overly simplistic
for modeling the structure of investment pricing data. This model assumes
that data originate from a mixture of Gaussian distributions, allowing mar-
ket data to be clustered by learning both the mean and variance for each
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regime. Using a SciKit-Learn GMM fitted to two components, the cluster-
ing results were similar to those of K-Means in that regimes were effectively
identified. For GMM, the results demonstrated even more frequent regime
switches than K-Means, likely attributed to GMM dynamically adjusting
covariance and providing a more precise fit. A grid search was conducted
across parameters such as covariance type and number of components to
refine the model. However, the results found limited benefit of parameter
adjustments in reducing regime switches, which validated the use of the
out-of-the box model.

3.3. Gaussian Hidden Markov Model. The HMM framework is suit-
able for regime identification for time-indexed financial data as it predicts
states sequentially, with previous dates influencing the next. The Gaussian
hidden Markov model (GHMM) is an HMM which assumes that emission
probabilities (i.e. the distribution from which observations are generated
from hidden states) follow a Gaussian distribution. In the case of regime
identification, the space of hidden states is {bear, bull} and the space of
observations are daily returns and engineered features, as described above.
The GHMM class from the HMMLearn Python package was used for all
experiments.

3.4. Gaussian Mixture Model Hidden Markov Model. Another ap-
proach used in regime prediction modeling is the Gaussian mixture model
hidden Markov model (GMMHMM). This differs from the GHMM in that
emission probabilities are now modeled with a Gaussian mixture model
rather than a single Gaussian.

In our implementation, we used the HMMLearn Python package to ef-
ficiently apply the GMMHMM model using two components. Similar to
the GMM, a grid search was conducted on the model, with negligible ben-
efit. Both HMM methods, like K-Means and GMM, successfully identified
regimes but displayed large amounts of noise, switching bull and bear iden-
tifications faster than real-world markets.

3.5. Statistical Jump Model. A promising model that mitigates unre-
alistic switching patterns is the statistical jump model, first introduced in
[NLM20]. The objective of this method is to fit a regime identification model
which penalizes switching between regimes. The formal definition given be-
low is adapted from [AKMS24]. Specifically, given an observation sequence
Y = {yo,...,yr_1} with y; € RP for all ¢, a statistical jump model with
K states is given by solving the optimization problem

T-1 1 T—1
(1> arg min Z 5 Hyt - GSt“g + A Z Hst—l#st
0.5 1o =1

where © := {0 € RP : k =0,..., K — 1} are the model parameters, S :=
{s0,...,87—1} denotes the state sequence, and A € R, is a hyperparameter
referred to as the jump penalty. A larger value of A encourages regime



THE BULLS AND THE BEARS: REGIME IDENTIFICATION AND FORECASTING 5

persistence, where a smaller value allows more flexibility. We can interpret
the loss function as a balance between fitting the data with multiple models
and prior beliefs on the persistence of the state sequence.

For implementation purposes, we used the python library jumpmodels
that was created along with the work in [AKMS24]. Notably, this library
learns the parameters of the jump model by performing a coordinate descent
algorithm several times, each run initialized by the results of the K-Means
algorithm. The parameters that result in the lowest value in the objective
function are then kept. For our modeling, we chose A = 50, as suggested by
the authors in [AKMS24]

The empirical results from the jump model demonstrate effective regime
identification while maintaining a reasonable rate of state switching. A
comparison between the test set performance of the statistical jump model
and the four previous models is given in Figure

3.6. Dimension Reduction Techniques. A key challenge in stock mar-
ket regime identification is ensuring that regimes are both robust and prac-
tically useful. Frequent switching between regimes—often driven by short-
term market noise—can raise transaction costs and reduce interpretability.
To address this issue, we applied Principal Component Analysis (PCA) to
reduce data dimensionality and suppress noise. By capturing most of the
variance in a smaller number of components, PCA can increase the signal-
to-noise ratio, potentially resulting in fewer and more meaningful regime
transitions.

Training features were standardized, and components explaining 95% of
cumulative variance were retained. To prevent data leakage, the PCA trans-
formation was derived from the training set and directly applied to the test
set. Effectiveness was assessed by visualizing cumulative SPY log-returns
with color-coded regimes, evaluating stability both qualitatively (continuity)
and quantitatively (switching frequency).

Despite its theoretical appeal, PCA yielded only modest practical benefits.
It slightly reduced regime switching in the KMeans model but showed limited
improvements in overall stability or interpretability across other methods.
Experimenting with random Gaussian projections yielded similar results
so we will omit it’s discussion here. In this context, dimension reduction
techniques contributed little to reducing noise, reinforcing the conclusion
that the observed instability is not primarily due to high dimensionality.

3.7. Forecasting. Forecasting stock market regimes remains a notoriously
challenging yet essential task for investment management. Accurate regime
predictions enable investors to strategically adjust portfolios ahead of major
market shifts, potentially enhancing returns and limiting risk more effec-
tively. Fortunately, forecasting investment regimes is simpler than predicting
returns directly. Investigating bull and bear markets, we are only concerned
about forecasting a binary indicator of up or down rather than the specific
magnitude of returns in continuous space.
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FIGURE 1. Regime identification on test set for several mod-
els fit on the training data. Each model partitions the data
into roughly the same regimes, however, all except the sta-
tistical jump model have a high frequency of switching. In
this figure, green corresponds to a bull identification and red
corresponds to bear.

In order for forecasts to be applied directly to investment strategies, pre-
dictions must be made in an online or rolling fashion, contrary to batch
prediction utilized in the test/train split mentioned previously. To con-
struct forecasts for the S&P 500, we fit each of the five models previously
mentioned with a 10 year lookback for each day, t. We then used built-in
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FIGURE 2. Plot of the returns of the S&P 500 Index (SPY)
against each of the forecasted model results. We see that
the statistical jump model excelled at avoiding the great re-
cession market downturn, and the other four methods lim-
ited losses during the COVID-19 market crash. Note that
although the S&P has higher returns, the Sharpe Ratio of
several models is higher (see Table .

functions (.fit()) to estimate the most likely regime sequence corresponding
to the data of days ¢t — 10 years to t. The last estimated value for day t
was then rolled forward one day to act as the prediction for day ¢ + 1. This
method relies upon a stationarity assumption between consecutive days,
which is realistic given economic intuition that bear and bull markets per-
sist for long durations. Because our data begins on January 1, 1994, the
first forecast occurs at the beginning of 2004. To further enhance regime
persistence, forecasts were filtered using a 12-day rolling median.

Because these forecasts were generated without look-ahead bias, trading
strategies can be created. We employed a simple 0/1 investment strategy
which deploys 100% capital to SPY if the forecasted regime indicates bull or
0% capital if bear is indicated. The performance of the strategy is measured
by the Sharpe Ratio. Figure [2| displays the performance of each model
against buying and holding SPY, comparable to Exhibit 9 shown in [SM24].

The jump models package published in tandem with includes an
online prediction method which generates a temporal state sequence day
by day, enabling improved application to investment strategies. We fit sta-
tistical jump models for each of the 11 sector ETFs with daily data from
2005 - 2019. The online prediction method then predicted future investment
regimes to present time. Because sectors consist of fundamentally different
companies, the sector ETFs are diversified from one another, with sector
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specific bear and bull markets occurring asynchronously with other sectors.
This phenomenon enables dynamic sector rotation, which we simulate by
investing equal amounts of capital into each sector indicating bull market
for each day t. The performance can be visualized in Figure (3| It should be
noted that while the dynamic sector strategy achieves a higher Sharpe ratio
than SPY and mitigates some crash risk, there still exist some days where
all but one ETF signals bear market, leading to significant losses when the
one bull prediction is incorrect on a market crash day. As such, future re-
search should investigate portfolio optimization techniques which consider
forecasting error.

Sector Rotational Investment Strategy vs. S&P 500

—— S&P 500, Sharpe Ratio = 0.75
1.0{ — Strategy, Sharpe Ratio = 1.05
0.8 A
%]
£
2
&
& 0.6
o
-
(]
2
© 0.4 1
=
€
3
O
0.2 |
0.0 | v

2019-01-02 2019-10-17 2020-08-04 2021-05-20 2022-03-07 2022-12-20 2023-10-09 2024-07-26
Date

FiGURE 3. The dynamic sector rotational investment strat-
egy outperforms the S&P 500 on a risk-adjusted basis. The
strategy effectively mitigated part of the COVID-19 market
crash, yet it still suffered large drawdowns at other times.

4. RESULTS AND ANALYSIS

The models evaluated in this paper demonstrated varying levels of effec-
tiveness in identifying market regimes. T'wo key performance measures were
used: visual identification of general market trends (to ensure correct de-
tection of major bull and bear periods) and average yearly regime changes,
which captures model confidence and stability. These metrics together of-
fer a balance between interpretability and practical applicability for trading
strategies. Based on this evaluation, Table [1| provides summary statistics
for our custom online forecasting method as described in section Figure
qualitatively displays similar results for our test/train split modeling.
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As shown in Table[l], the statistical jump model performed best, correctly
aligning with market trends and averaging only 0.70 regime changes per year.
The GMM also identified key bull and bear phases, but with a higher average
of 8.80 yearly regime changes, indicating some noise and less stability. In
contrast, K-Means, GHMM, and GMMHMM exceeded 12.00 regime changes
per year, making them less practical for trading. Although these models were
generally successful in detecting market downturns, the frequency of regime
shifts reduced their reliability, and none showed a clear advantage over the
others.

| GMM | K-Means | GHMM | GMMHMM | JM

Mean Yearly
Regime Changes
Mean Regime
Length
0/1 Strategy
Sharpe Ratio vs. 0.38 0.59 0.65 0.64 0.50

SPY (0.51)

8.80 14.80 12.80 13.60 0.70

51.70 31.70 33.30 32.80 380.60

TABLE 1. Summary statistics of forecasting models using a
12-day rolling median. The jump model shows a significantly
longer average regime length, suggesting it is best at limiting
noise in market data.

We believe the primary reason the statistical jump model outperformed
the others is its explicit incorporation of a penalty for regime switches.
This is further supported by the fact that setting the penalty term A = 0
in the objective function (Equation [1)) reduces it to the K-Means objec-
tive—corresponding to our K-Means model, which produced noticeably nois-
ier predictions. The remaining models (GMM, GHMM, GMMHMM) are all
built on the assumption of normally distributed data. However, since these
are probabilistic models without any explicit penalty for regime switching,
there is little reason to expect their estimates to be smooth or resistant
to noise in the absence of additional regularization. A variant on these
probabilistic methods wherein regime switches are penalized would be an
interesting future research direction.

Our work with dimensionality reduction techniques further suggests that
the artificially high dimensionality of the dataset does not significantly con-
tribute to the noise within the models. Rather, the instability appears to
stem from inherent market complexity and the limitations of the models
themselves, rather than from excess input dimensions.

Finally, our forecasting models and trading strategy outperformed the
buy-and-hold S&P 500 approach, achieving a higher Sharpe ratio while mit-
igating market crash risk. This demonstrates the potential of regime fore-
casting despite the inherent challenges of financial market prediction. While
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extensive research exists in this area, our results add GMM models to the
current body of literature and reinforces the value of statistical models in
predicting and classifying regimes, which can be leveraged to enhance port-
folio trading strategies.

5. ETHICAL IMPLICATIONS AND CONCLUSIONS

In financial markets, ethical risks are inherent in the handling of money,
especially when making predictions that influence investment decisions. Al-
though the data used in our models is publicly available via the yfinance
package, the predictive nature of these models still raises important ethical
considerations. While privacy is not a concern in this case, the broader re-
sponsibility of using predictions to guide financial behavior remains. Firms
offering financial advice typically undergo certification in risk management
and ethics to ensure legal and ethical compliance. A key concern is black-box
decision making, where models classify market regimes without clear, inter-
pretable rationale. This lack of transparency can undermine trust, account-
ability, and justification for decisions based on such predictions, potentially
leading to misguided investments and financial harm.

We also recognize there exists a potential risk of our model creating a
feedback loop. For example, if the model predicts a bull market, investors
might act on the prediction and help create the trend that was predicted.
However, we believe the market’s behavior is not purely driven by specula-
tion. Prices are still connected to the real value of businesses, which generate
revenue and hold assets. So while market sentiment matters, our work aims
to capture deeper, meaningful shifts based on actual economic activity.

6. CONCLUSION

In this study, we evaluated several machine learning tools for financial
regime identification and forecasting using ETF data from 1994 onward.
Given the results, it is clear that the statistical jump model should be prior-
itized over other methods when developing a regime-based investment strat-
egy. Our PCA-based dimensionality reduction approach yielded marginal
improvements but did not significantly enhance model stability. We recog-
nize the limited applicability of our modeling to the average investor because
of computational requirements. For the investment professional, while quan-
titative regime identification techniques hold promise, significant challenges
remain before such methods can reliably guide investment strategies with-
out additional risk management safeguards. We propose that future work
could consider incorporating penalties for regime switches into the GMM,
GHMM, and GMMHMM models.
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