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Abstract

This work explores both classical and modern approaches to the contextual bandit
problem. We investigate the performance of Linear Upper Confidence Bound (Lin-
UCB), Linear Thompson Sampling (LinTS), and their neural network-based coun-
terparts, NeuralUCB and NeuralTS. The decision-making strategies of LinUCB and
LinTS are shown to follow naturally from Bayesian principles, while intuition is pro-
vided for the design of their neural analogs. We evaluate all methods on both synthetic
data sampled from the unit ball and on the Iris dataset. The results highlight the trade-
offs between exploration and function approximation across these algorithmic families.

1 Introduction and Motivation

The contextual bandit problem is a foundational framework in reinforcement learning
(RL) and sequential decision-making. In this setting, an agent repeatedly selects actions
based on observable context, receiving partial feedback in return. It lies between the multi-
armed bandit (which lacks context) and the Markov Decision Process (which considers full
state transitions), offering a balance between expressiveness and tractability.

Contextual bandits are widely used in real-world applications such as recommendation
systems, adaptive clinical trials, and personalized tutoring [4,6,8,9]. The framework also
serves as a common starting point for theoretical advances in RL. For example, Posterior
Sampling for Reinforcement Learning (PSRL) was motivated by Thompson Sampling [7].

In this project, we investigate the theoretical foundations of two classical algorithms:
Upper Confidence Bound (UCB) and Thompson Sampling (TS), along with their exten-
sions—LinUCB, LinTS, NeuralUCB, and NeuralTS. The goal is not to introduce new meth-
ods, but to deepen understanding through both theoretical analysis and empirical evaluation.

2 Mathematical Preliminaries

This section outlines the contextual bandit framework and key notation used throughout.

At each time step t € [T], an agent interacts with the environment as follows:

e Observe contexts: The agent receives a set of context vectors {z;, € R¢}
for each available action a € [K].

e Select action: Based on the observed contexts, the agent chooses an action a; € [K].

e Receive reward: The agent receives a reward r;,,, drawn from an unknown distri-
bution dependent on g, .

K

a—1, ONe



e Update model: The agent updates its internal parameters using the tuple (2 q4,, ar, 7t,q,)-
The agent’s objective is to maximize the expected cumulative reward:

> rt,at] . (1)

t=1

E

Performance is commonly evaluated via regret, defined as the difference between the reward
of the optimal action and the chosen action:

T

Regret(T) = Z (1} — Ttay) (2)

t=1

where r} is the reward of the optimal action at time ¢. A desirable property is sublinear
regret, i.e., Regret(T") € o(T), implying that the average regret tends to zero as T" — oc.

3 Linear Models

3.1 Upper Confidence Bound and LinUCB

The Upper Confidence Bound (UCB) algorithm selects actions by balancing exploration and
exploitation, choosing actions that are optimistic under current uncertainty [2]. The generic
form is:

a; = argmax fi, + ad, (3)
a€[K]
where i, and 6, are the estimated mean and uncertainty (e.g., standard deviation) of
arm a, and o € R, controls the exploration-exploitation trade-off.

3.1.1 LinUCB: Linear UCB with Context

LinUCB [6] extends UCB to contextual bandits under the assumption that expected reward
is linear in the context:
Tta = xzaez + &

where x;, € R? is the context vector for arm a at time ¢, 7 € R? is an unknown parameter
vector, and &; ~ N(0,0?) is noise. At each timestep, the agent selects the arm

T4 / —1
a; = argmax ¥, 0 + xZaAt’axm (4)

a€[K]



where

t—1
Apo =M + Z Tra g - ar = d] (5)
T=1
t—1
bra = Z "rTrq, - Lla, = a (6)
T=1
ét,a - A;;bt,a (7)

3.1.2 Bayesian Interpretation

LinUCB can be viewed through the lens of Bayesian linear regression, where 6, ~ A(0, \711)
is a Gaussian prior and rewards are observed with Gaussian noise. Under this model, the
posterior over 6, is

O, | Dt,a ~ N(ét,aa At_;) (8)

and the posterior predictive distribution over reward is

ft,a = x;,rae(l ~ N(%Ia9t7a, LEIaA;;l'tﬂ) (9)

Due to page constraints, the full derivation of this is given in Appendix[A] LinUCB selects

the arm with the highest upper confidence bound on expected reward under this posterior.
3.2 Thompson Sampling and LinTS

Thompson Sampling (T'S) maintains a posterior distribution over the model parameters and
selects actions by sampling from this posterior. Given a reward model 7(Zt.0;04), TS samples
0, ~ P(0, | D) at each round and chooses

ay = argmax 7(yq; 0,), (10)
a€[K]

where D denotes the current dataset. This stochastic selection naturally balances explo-
ration and exploitation.

3.2.1 Assumptions and Action Selection

LinTS [1] applies TS in the linear reward setting 7, = x, ;. At each round, it samples

éa NN(‘A;;bt,aaA;c}% (11)

and selects

a; = argmax z, 0,
a€[K]

where Ay, and by, are defined in equations [5 and []



3.2.2 Bayesian Derivation

These updates follow directly from the Bayesian linear regression derivation used in LinUCB
(Appendix [A). Given the prior 6, ~ N'(0, \'I), the posterior is

Ou | D~ N(Bra, AL, (12)
which leads to the LinTS sampling step in equation [L1]
3.3 Differences in Exploration Between LinUCB and LinTS

While LinUCB and LinTS rely on the same Bayesian posterior over arm parameters (see
Eq. , they differ in how uncertainty guides action selection. LinUCB uses an upper confi-
dence bound (UCB) to optimistically favor uncertain arms, whereas LinTS samples from the
posterior, introducing stochasticity into decisions. This difference results in distinct explo-
ration dynamics: LinUCB deterministically favors arms with high uncertainty, while LinTS
may naturally explore both high-mean and high-uncertainty arms. In practice, LinTS can
outperform LinUCB without tuning, while LinUCB requires calibration of its exploration
parameter .

See Appendix [B| for a synthetic example comparing the selection behavior of LinUCB
and LinTS in a fixed context setting.

3.4 Regret Analysis of LinUCB and LinTS

While detailed regret proofs are beyond the scope of this work, both LinUCB and LinTS
achieve regret bounds of order O(v/T) under linear reward assumptions, where O hides
logarithmic factors |11|3].

3.5 Empirical Comparison of LinUCB and LinTS

We empirically compare LinUCB and LinTS under both linear and nonlinear reward func-
tions. Following the setup in [11], we consider d = 20-dimensional contexts and K = 4 arms.
Contexts are sampled uniformly from the unit ball in R? [5], and each arm a has an unknown
parameter 6, ~ N (0, 1).

We test both a linear reward function h(z) = z"60, + ¢, and a quadratic reward function
ho(z) = (2760,)? + &, where &, ~ N(0,0.12). Results are shown in Figure[l] see Appendix
for full experimental details. Aligned with their theoretical guarantees, regret for both
LinUCB and LinTS plateaus under the linear reward function. Under the quadratic reward
function, regret appears to be linear. This highlights a need for bandit algorithms to learn
in nonlinear settings.

4 Neural Models

To address the limitations of linear methods in modeling complex reward structures, we
now consider neural contextual bandits. Specifically, we study NeuralUCB and NeuralTS,
which leverage neural networks for flexible reward estimation.

4.1 NeuralUCB

NeuralUCB [11] extends LinUCB by modeling expected rewards with a neural network
f(z;0). Exploration is guided by an upper confidence bound, where the mean is taken as



Cumulative Regret Comparison, re = x, 6, + & Cumulative Regret Comparison, ry= (x{6,)% + &

%1 — Linucs 700{ —— LinUCB
— LinTS — LinTS

Cumulative Regret
&
Cumulative Regret

6 160 260 360 460 560 5 160 2[‘)0 360 460 560
Rounds Rounds

(a) Linear rewards (b) Quadratic rewards

Figure 1: Comparison of LinUCB and LinTS on linear vs. nonlinear rewards. Both methods
exhibit sublinear regret under linear rewards but fail under nonlinear structure. Shaded
regions show confidence intervals over five runs.

the output of the f(z;0) and the uncertainty is estimated with the gradients of the network.
The idea is that large gradients imply high sensitivity to the model parameters and greater
uncertainty in that region of the input space. The exact equations defining the uncertainty
estimate are provided in Appendix [D]

4.2 NeuralTS

NeuralTS [10] models the reward directly using a neural network and samples from its
predictive distribution. Unlike standard Thompson Sampling, it samples scalar outputs
rather than model parameters:

Tta ™~ N(f(xt,a; 6)7 V20-t2,a)7

where 0y, is the same gradient-based estimate as NeuralUCB and v? is a chosen variance
hyperparameter. Full details appear in Appendix [E]

4.3 Theoretical Guarantees

Both methods achieve sublinear regret 9] (\/T) under mild assumptions, similar to their linear
counterparts [10,/11].

4.4 Empirical Performance

Figure [2a shows performance on the previously described synthetic data using the quadratic
reward function hs from Section [3.5] Neural methods plateau, suggesting sublinear regret,
while linear methods do not. Similar behavior is seen on the Iris dataset (Figure [2D]), where
NeuralUCB initially over-explores. Both experiments highlight the power of these methods
to learn optimal behavior in nonlinear settings.



4.4.1 K-Class Classification as a Contextual Bandit

We frame K-class classification as a K-armed contextual bandit problem: each class corre-
sponds to an arm a € [K], and rewards are defined as

1 lf ay = Y
Ty = i
0 otherwise

The Iris dataset has 3 classes and 4 features. Results in Figure 2b| mirror synthetic trends.
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(a) Synthetic dataset: Linear methods show lin-  (b) Iris dataset: NeuralUCB appears to over-
ear regret, while neural methods plateau. explore initially, but both neural methods
plateau.

Figure 2: Comparison of all four algorithms (LinUCB, LinTS, NeuralUCB, NeuralTS) on
synthetic and real-world datasets.

5 Discussion and Conclusion

This study highlights the advantages of neural contextual bandit algorithms, specifically
NeuralUCB and NeuralTS, over traditional methods like LinUCB and LinTS. Both neu-
ral models demonstrate sublinear regret, outperforming the linear approaches on synthetic
and real-world datasets. While NeuralUCB achieves good performance, it exhibits over-
exploration in the early rounds on the Iris dataset, which suggests a need for improved
exploration-exploitation balance.

Future work could focus on refining exploration strategies in NeuralUCB, improving scal-
ability to larger datasets, and exploring advanced network architectures for more complex
reward functions. Overall, neural bandits show great promise for handling nonlinear relation-
ships in contextual bandit problems, but further development is needed to address challenges
in exploration and scalability.
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A Bayesian Derivation of LinUCB

We derive the LinUCB update equations from Bayesian linear regression. Assume that
the reward for arm a at time ¢ follows the linear-Gaussian model:

Tta = x;—aea + Et, Et ~ N(O, 1)

with prior 6, ~ N(0, A1) for some regularization parameter A > 0.

Let D, € REDxd denote the design matrix formed by stacking all feature vectors z,,
for which arm a was selected up to time t—1, and let ry.4_1 , € R!~! denote the corresponding
rewards. The likelihood is:

T1:t—1,a | 9&7 Dt,a ~ N(Dt,aeaa I)
By Bayes’ rule, the posterior is:

(9 |'rlt laaDta>O(Pr1t 1a|‘9a7Dta) (9a|Dt,a>

1 A

oc exp | —=||r1s-1.a — Deaball? ) - exp [ == ||6al?
2 2
1

exp( 5 QT DT Dta—i-)\l) O — (ZTItfl’aDm) 9a+const])

Lt

X exp 5 0 Apabla — 2by o0,
1 T 1
5 bta) Ata(ea_At’abt,a)]

N (0 Ata>

where A; 4, by o, and éma are defined in equations @, and (7}, respectively. Then the posterior
is Gaussian: )
9(1 | Tl:t—l,aa Dt,a ~ N(et,Cw A;j) (]-3)

with posterior mean ét o=A bt a
Finally, the predictive distribution for the reward of arm a at time ¢ is:

Tta = :ctT 0, J\/'(a:t(ﬁta, a:taA xta) (14)

a

The LinUCB algorithm selects the arm with the largest upper confidence bound:

a; = arg max xtaé’taqLoz\/xtaA oTta

a€[K]

This completes the Bayesian justification of the LinUCB action selection rule.



B Exploration Behavior: LinUCB vs. LinTS

To illustrate the different exploration strategies, we consider a synthetic contextual bandit
scenario with a fixed context:
1.0
= {0.5}

Each arm has a true reward parameter vector:
1.0 0.0
b0 = {0.0} » Gi= {1.0}

which yield expected rewards g = 1.0 and g = 0.5.
We simulate the agent’s beliefs with synthetic Gaussian posteriors:

Arm 0: N([0.5,0.0], 0.1-1), Arm 1: N(]0.0,0.5], 1.0- )

Figure |3 shows that LinUCB always selects the arm with the higher upper confidence
bound (in this case, arm 1 due to high uncertainty), while LinTS samples from the posterior
and occasionally selects the lower-variance arm due to its higher mean.

Exploration Behavior: LinTS vs. LinUCB

1000 A LinTS
LinuCB

750

500 -

Number of Selections

250 A

Arm 0 Arm 1

Figure 3: Empirical selection frequency over 1000 runs at a single decision point. LinTS
stochastically explores, while LinUCB deterministically chooses the highest UCB arm.

C Experimental Setup for LinUCB and LinTS

For all experiments in Section [3.5 we use the following setup:

Number of arms: K =4

Context dimension: d = 20

Time horizon: T = 500

Each context vector z;, is drawn uniformly from the d-dimensional unit ball.
True arm parameters 6, ~ N (0, I;) independently for each arm.

Additive noise: &, ~ N(0,0.1%)



e Algorithms are averaged over 5 runs to compute regret and confidence intervals.

D NeuralUCB Derivation

NeuralUCB estimates uncertainty for arm a at time ¢ via

9

\/vf<xt,a; et—l)TZt__llvf(-Tt,a§ 0i-1)

m

where

1
Ly = Ziq + Evf(mt,a; 0i-1)V f (2105 9t—1)T~

This Mahalanobis norm captures gradient sensitivity, increasing in unexplored input regions.

E NeuralTS Derivation

Neural TS trains the network by minimizing
1 o mA
: ) 2, MAL a2
exginin 5 3 [/ (o1ai6) = il + %510 — ol
It samples rewards as

Tta ™~ N(f(xt,a; 6)’ V201f2,a)7

where 02, matches the uncertainty from NeuralUCB and v? is a chosen variance parameter.

10



	Introduction and Motivation
	Mathematical Preliminaries
	Linear Models
	Upper Confidence Bound and LinUCB
	LinUCB: Linear UCB with Context
	Bayesian Interpretation

	Thompson Sampling and LinTS
	Assumptions and Action Selection
	Bayesian Derivation

	Differences in Exploration Between LinUCB and LinTS
	Regret Analysis of LinUCB and LinTS
	Empirical Comparison of LinUCB and LinTS

	Neural Models
	NeuralUCB
	NeuralTS
	Theoretical Guarantees
	Empirical Performance
	K-Class Classification as a Contextual Bandit


	Discussion and Conclusion
	Bayesian Derivation of LinUCB
	Exploration Behavior: LinUCB vs. LinTS
	Experimental Setup for LinUCB and LinTS
	NeuralUCB Derivation
	NeuralTS Derivation

