AlphaGomoku: Applying AlphaZero to the Game
of Gomoku

1** Matthew Shumway
CS 40IR - Reinforcement Learning
Brigham Young University
Provo, UT, USA
mwshumway7 @gmail.com

Abstract—This project explores the application of the Al-
phaZero algorithm to the game of Gomoku, a two-player
strategy game played on a 15x15 board. AlphaZero combines
deep reinforcement learning with Monte Carlo Tree Search
(MCTYS) to train agents through self-play, achieving superhuman
performance in games like Go, Chess, and Shogi. We adapt
AlphaZero to Gomoku by designing a policy-value neural net-
work that incorporates convolutional layers to capture the spatial
structure of the board and employing MCTS for intelligent
action selection. The training process involves iterative self-play,
where the agent refines its strategy by balancing exploration and
exploitation. Despite the computational limitations compared to
other implementations, the results demonstrate the effectiveness
of AlphaZero in solving nontrivial games like Gomoku and
provide insights into the algorithm’s adaptability to new domains.

Index Terms—Reinforcement Learning, Alpha Zero, Monte
Carlo Tree Search, Policy Value Network

I. INTRODUCTION

Reinforcement learning (RL) is a powerful paradigm for
training agents to interact with environments in ways that
maximize performance based on pre-defined reward signals
or costs. Over the past decade, advancements in innovative
algorithms and computational capabilities have revolutionized
RL, enabling efficient exploration of vast state and action
spaces and the accurate approximation of value functions and
policies. One notable breakthrough was the development of
an algorithm designed for the ancient Chinese game of Go.
This algorithm, known as AlphaGo Zero, achieved superhu-
man performance without relying on human knowledge [1]].
The methodology was later generalized into the AlphaZero
algorithm, capable of mastering a variety of environments.
AlphaZero has excelled in turn-based, two-player games with
clear rules and outcomes, while also demonstrating its utility
in diverse applications, such as discovering efficient matrix
multiplication algorithms [2].

This paper provides an in-depth description of the Alp-
haZero algorithm and adapts it to the game of Gomoku, a
two-player strategy game typically played on a 15x15 board.
The objective of Gomoku is deceptively simple: align five
stones of the same color in a row—horizontally, vertically, or
diagonally. However, the game’s strategic depth arises from the
complexity of its state space and the nuanced decision-making
required. Compared to games like Go or Chess, Gomoku’s

strategies are more approachable, making it an ideal candidate
for exploring novel RL approaches while remaining nontrivial.
Notably, Gomoku is a theoretically solved game, with the
starting player guaranteed to win under perfect play [3|], further
underscoring its value as a benchmark for RL algorithms.

II. RELATED WORK

After choosing this topic for my project, I quickly realized
that many others have pursued similar ideas [4]-[6]]. These
projects often benefit from access to far greater computational
resources, such as larger clusters of GPUs or CPUs, enabling
them to develop more optimized and sophisticated agents.
Thus, while the novelty of this project may be questionable,
it was nevertheless a highly informative and enjoyable expe-
rience for me.

III. ALPHAZERO ALGORITHM

The AlphaZero algorithm consists of three main compo-
nents: (1) a policy-value neural network, (2) Monte Carlo Tree
Search (MCTS) for intelligent action selection, and (3) self-
play, where the agent repeatedly plays against itself. These
components operate in a cyclical process, continuously im-
proving the agent’s performance through iterative refinement.

A. Policy-Value Network

Consider a neural network parameterized by weights 6,
defined as fy(s) = (ps,vs). Here, s € S represents a state
in the state space, and the outputs p,; and v are interpreted
as follows:

e ps € R4l is a probability distribution over the action
space A. It is optimized to approximate the probability
distribution over actions chosen by an optimal player,
such that ps(a) ~ P(a is optimal | s). Note that our
definition of p assumes a finite action space.

e vs € R is a scalar representing an approximation of
the expected reward for being in state s, such that
vs ~ E[reward | s].

In Gomoku, states are typically represented as two-
dimensional matrices that model the game board. Each element
of the matrix corresponds to a square on the board, where a
value of O indicates an empty square, 1 represents a square
occupied by player 1’s stone, and -1 represents a square
occupied by player 2’s stone.

In Gomoku, the spatial arrangement of stones is crucial
for determining optimal moves, as patterns like rows, blocks,
or threats dictate the game’s strategy. To accommodate for
such, we include several convolutional layers in the neural
network architecture. The general architecture that was used

is displayed below:

Fig. 1. The general architecture used for the Policy-Value Network.

B. AlphaZero Monte Carlo Tree Search

MCTS is an intelligent algorithm used to simulate mul-
tiple actions while focusing on the most promising ones,
as determined by game outcomes and prior probabilities. In
AlphaZero, MCTS combines traditional search methods with a
policy-value network fy. The algorithm is summarized below:

Algorithm 1 AlphaZero Monte Carlo Tree Search
Input: state s, policy-value network fy, number of simu-
lations N
Output: probability distribution of optimal actions 7
Initialize a tree with the root node corresponding to state s

for simulation 1 =1 to N do
Selection: Traverse the tree from the root node using the
PUCT formula:

a* = arg max (Q(S’a) +e-Pls,a)- H]J\\;((«:)a)>

Continue until a leaf node sje,s is reached

Expansion: Expand s.,s by adding child nodes for all
possible actions

Use the policy-value network fy to initialize P(Seaf, a)
and the value vy

Simulation: Use v, (from fy) as the evaluation of Sje,f
Backpropagation: Propagate v, up the tree, updating:

Q(s,a) < updated mean value
N(s,a) + increment visit count

end for
Return: 7(a) o< N(s,a) (visit counts normalized to form
a probability distribution)

The PUCT formula plays a critical role in balancing explo-
ration and exploitation during the search. Specifically:

e Q(s,a) is the current estimate of the expected value of
taking action a in state s.

e P(s,a) is the prior probability of action a, provided by
the policy network fy.

e N(s) is the total visit count of the parent node (state s),
and N(s,a) is the visit count of the child node (action
a).

e c is a hyperparameter controlling the balance between
exploration and exploitation.

Unlike traditional MCTS, which relies on random rollouts to
evaluate states, AlphaZero uses the value v, predicted by the
policy-value network, as a direct evaluation of the leaf node.
During the Expansion step, newly added nodes are initialized
with P(s, a) from the network, ensuring that prior probabilities
guide the search. In the Backpropagation step, Q(s,a) is
updated to reflect the mean value of the visits, while N(s,a)
tracks the visit counts for each action.

Finally, after all simulations are complete, the normalized
visit counts

m(a) x N(s,a)

form the output policy distribution. This distribution balances
exploration and exploitation and is used during training to
sample actions or directly select the most promising move.

For further details on the interplay between the policy-value
network and MCTS, see [1].

C. Self-Play

The self-play phase generates training data by having the
agent play against itself using the current neural network
parameters. A predefined number of games are played, each
game continuing until completion. At each step, the state sy,
the probabilities of action of MCTS py, and the reward vy, are
recorded. These data are saved, to be used after self-play to
train the neural network, which minimizes the loss function

0= (2, —vg)* — m} log pr,

where recall v, and pj are the outputs of the neural network.
The process of self-play and training is repeated until a
specified stopping condition is reached, such as a set number
of self-play/train episodes.

IV. METHODOLOGY

The game state in Gomoku is represented as a square matrix
of a fixed size. For input to the neural network, this state was
encoded into four distinct matrices, each providing different
information about the game environment:

1) Player’s Stones: A binary matrix where a value of 1
indicates the presence of the current players stones

2) Opponent’s Sontes: A similar binary matrix, but repre-
senting the opponent’s stones

3) Last Action: A binary matrix where a value of 1 marks
the position of the last action

4) Player Identifier: A matrix filled with the current player’s
ID

This representation captures both spatial and temporal features.
Alternate encodings could potentially enhance performance,
such as incorporating pattern-based encodings that explicitly
track threats (e.g. open three-in-a-row) or multi-channel his-
torical data that tracks recent moves. Exploring these different
representations could be worthwhile in future work.

Rewards were simply defined as

. WiIlZ +1
e Loss: —1
e Draw: 0

A. Simplification of the Problem

Training an AlphaZero agent is computationally intensive,
with the MCTS as the primary bottleneck. Due to limited
computational resources, the game was simplified to a 6 x 6
board with a win condition of achieving four in a row.
This significantly reduced state and action space, enabling
faster simulations and training. Despite these simplifications,
however, the training process remained resource heavy, often
taking more than 6 hours per training session. Even after such
training, the agents were not highly competitive, suggesting
that further optimization, a deeper neural network, or greater
computational resources would be required for improved per-
formance.

To overcome these challenges, I used a pre-trained model
from Junxiao Song [7]], who had trained an AlphaZero-based
agent for a 8 X 8 board with a win condition of five in a row.
His model, developed with more extensive computational re-
sources, provided a stronger starting point for experimentation.
By using these pre-trained weights, I could bypass some of the
computational bottlenecks and focus on testing the adaptations
for smaller-scale games.

V. RESULTS

Subjectively, the AlphaGomoku agent exhibited a high level
of play, demonstrating strong defensive strategies and the
ability to capitalize on mistakes, making it a formidable
opponent.

For a more objective evaluation, the agent’s performance
was tested against a random player and a rule-based player.
The rule-based agent uses heuristics to evaluate the state of the
board, prioritizing immediate wins, blocking threats from the
opponent, and creating advantageous setups such as sequences
of two or three stones. Detailed implementation can be found
in the attached code.

The results of AlphaGomoku’s performance against these
baselines are shown in Table [

Opponent Opening Player | Win Rate | Draw Rate | Lose Rate
Random Random 100 0 0
Random AlphaGomoku 100 0 0
Rule-Based Rule-Based 60 20 20
Rule-Based | AlphaGomoku 100 0 0
TABLE I

BASELINE COMPARISONS OF ALPHAGOMOKU PLAYED AGAINST RANDOM
AND RULE-BASED PLAYERS. PLAYED FOR 20 GAMES EACH.

As shown in Table I AlphaGomoku consistently outper-
formed both random and rule-based players, achieving a 100%
win rate when starting as the first player. When playing as
the second player, a recognized disadvantage in Gomoku,
AlphaGomoku achieved a 60% win rate against the rule-based
agent, with losses primarily due to the first-move advantage
of its opponent.

These results highlight AlphaGomoku’s ability to outper-
form simpler strategies and demonstrate its robustness against
random and rule-based approaches. Future work could involve
evaluating AlphaGomoku against other reinforcement learning
methods, such as Deep Q-Networks (DQNs) or policy gradient
algorithms. Limited availability of comparable models for 8 x8
boards and time constraints prevented such comparisons in
this study, but this represents a promising direction for further
research.

VI. DISCUSSION
A. Performance

The AlphaZero algorithm demonstrated strong performance
in 8x8 gameplay, showcasing its capability to learn and
master the underlying strategies of the game. Despite this
achievement, its relative performance compared to other re-
inforcement learning (RL) algorithms remains uncertain due
to the lack of a comprehensive benchmarking study. Future
evaluations should incorporate direct comparisons with other
state-of-the-art RL algorithms to assess its relative strengths
and weaknesses.

B. Challenges

One of the primary challenges encountered during the
project was the computational intensity of training. The Monte
Carlo Tree Search (MCTS) component, combined with the
neural network training, required significant computational
resources. To mitigate this, pretrained weights were utilized,
which expedited the training process but limited opportuni-
ties for experimentation with alternative configurations. This
computational bottleneck highlights the importance of access
to high-performance hardware in implementing complex RL
algorithms like AlphaZero.

C. Future Directions

To address the challenges and limitations encountered, sev-
eral avenues for future work are proposed:

« Parallelization of MCTS: Implementing parallelized
MCTS could significantly reduce the computational bur-
den and enable faster simulations.

« Enhanced Computational Resources: Accessing more
computational power, such as through more GPUs or
distributed computing, would enable deeper exploration
of the algorithm’s capabilities.

o Comparative Analysis: Systematic comparisons with
other AlphaZero implementations and alternative RL al-
gorithms that train faster (e.g., Proximal Policy Optimiza-
tion or Deep Q-Networks) should be conducted.

o User Interface Development: Creating a visually appeal-
ing graphical user interface (GUI) for the game would
enhance its usability and accessibility for non-technical
users.

D. Overall Reflection

Overall, this project was an exciting and enlightening ex-
perience. It provided valuable insights into the intricacies of
implementing a sophisticated RL algorithm like AlphaZero.
The hands-on nature of the project allowed for a deeper
understanding of the computational and algorithmic challenges
involved, as well as the potential for future improvements.
Despite the limitations, the project was highly informative
and highlighted the importance of computational resources,
algorithm optimization, and comparative benchmarking in
advancing the field of reinforcement learning.

E. Code

The code for the project can be found on the github
repository here.

(1]

(2]

31

(4]

(5]
(6]

REFERENCES

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering the
game of go without human knowledge,” nature, vol. 550, no. 7676, pp.
354-359, 2017.

A. Fawzi, M. Balog, A. Huang, T. Hubert, B. Romera-Paredes,
M. Barekatain, A. Novikov, F. J. R Ruiz, J. Schrittwieser, G. Swirszcz
et al., “Discovering faster matrix multiplication algorithms with reinforce-
ment learning,” Nature, vol. 610, no. 7930, pp. 47-53, 2022.

L. V. Allis, H. J. Herik, and M. P. Huntjens, Go-moku and threat-
space search. University of Limburg, Department of Computer Science
Maastricht, The ..., 1993.

W. Liang, C. Yu, B. Whiteaker, I. Huh, H. Shao, and Y. Liang, “Mastering
gomoku with alphazero: A study in advanced ai game strategy,” Sage
Science Review of Applied Machine Learning, vol. 6, no. 11, pp. 32-43,
2023.

M. Naiyanayagam, “Alphazero implementation in python,” https://github.
com/michaelnny/alpha_zero| 2023.

hijkzzz, “Alphazero for = gomoku,” |https://github.com/hijkzzz/
alpha-zero-gomoku, 2023.

[71 J. Song, “Alphazerogomoku,’” 2018.[Online]. Available ;

https://github.com/mwshumway/alphagomoku
https://github.com/michaelnny/alpha_zero
https://github.com/michaelnny/alpha_zero
https://github.com/hijkzzz/alpha-zero-gomoku
https://github.com/hijkzzz/alpha-zero-gomoku
https://github.com/junxiaosong/AlphaZero_Gomoku

	Introduction
	Related Work
	AlphaZero Algorithm
	Policy-Value Network
	AlphaZero Monte Carlo Tree Search
	Self-Play

	Methodology
	Simplification of the Problem

	Results
	Discussion
	Performance
	Challenges
	Future Directions
	Overall Reflection
	Code

	References

